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Fig. 5. Synthesized strip width in the lossy case (f = 0).

long as p; is small. The exact numerical results in this paper show
that the present theory provides a generalized theory for determining
the impedance taper profile in lossy and dispersive media.

IV. CoONCLUSION

A new efficient synthesis technique for the specified frequency
response of lossy and dispersive tapered transmission line has been
presented. This technique was accomplished by the optimization

process to extract the optimum null points for the synthesis of the-

desired taper profile in the existence of a loss and dispersion. The
results of synthesizing a microstrip transformer for example shows
that the present synthesis technique with loss is important for design
of high-frequency and high-density integrated circuits giving effect
on the determination of the electrical length.
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Mode Orthogonality Relations and
Field Structure in Chirowaveguides

E. O. Kamenetskii

Abstract—By analyzing the vector and scalar equations for chirowaveg-
uides, two forms of mode orthogonality relations are obtained: the
vector formulated orthogonality and the scalar formulated orthogonality.
The first one is applicable to the general case of open chiroplasma or
chiroferrite waveguides. It is shown that for two parallel-plate isotropic
chirowaveguides, these two forms of orthogonality relations differ. Based
on mode orthogonality relations, it is shown that in chirowaveguides the
polarization of so-called complex modes differs from that of propagating
or evanescent modes. The correlation between field components of two
complex modes that transfer active power flow in chirowaveguides is
obtained.

I. INTRODUCTION

A number of problems related to chirowaveguides have been
investigated and reported [1]-[13]. For example, dispersion char-
acteristics and field distributions in parallel-plate {1]-[3], open-
slab [4], [5], circular [2], [6], [7], and closed rectangular [8], [9]
chirowaveguides have been studied. The surface waves in chiral
layers have been analyzed noting elliptically polarized transverse
electric and magnetic fields in the layers [10]. The theory of wave
propagation in chiroplasma and chiroferrites [11] and the theory of
chiroferrite waveguides [12], have also appeared. It has been pointed
out in [13] that modes in chirowaveguides have interesting and useful
properties of power orthogonality.

The power orthogonality (or vector formulated orthogonality rela-
tions) obtained in [13] for isotropic chirowaveguides may be easily
extended to a more general case of lossless open chiroplasma or
chiroferrite waveguides. Together with this type of orthogonality, one
can also obtain the scalar formulated orthogonality relations. We will
show that the scatar formulated orthogonality are not derived from
the vector formulated orthogonality.
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Mode orthogonality relations obtained in this paper are correct
for different types of modes: propagating, evanescent, or complex.
Complex modes have been found recently in closed chirowaveguides
[3]. [7]. [9]. We will show that the polarization of complex modes
in chirowaveguides differs from the polarization of propagating and
evanescent modes. An interesting result obtained in this paper is
a special type of reflection symmetry for complex modes. This
reflection symmetry shows the correlation between field compo-
nents for two complex modes that transfer active power flow in
chirowaveguides.

The relations of mode orthogonality are useful for solving mode
excitation problems and for the development of coupled-mode formal-
ism in chirowaveguides. Such relations allow us to obtain correlation
between mode field components and therefore to give information
about a structure of mode fields without solving the dispersion
equations.

fI. VECTOR AND SCALAR FORMULATED ORTHOGONALITY RELATIONS

One can use an abstract formulation to write the time-harmonic
fields in a regular waveguide

GI =0 O

where G is a linear differential operator, and T 15 a vector wave
function that characterizes the fields. The function ¥ satisfies homo-
geneous boundary conditions. To obtain the orthogonality relation, we
have to define the scalar product for two vector functions and to in-
troduce a notion of conjugate operator [14]. In the vector-formulated
orthogonality relations, the vector wave function T is composed
by the vectors of the electromagnetic field. In the scalar-formulated
orthogonality relations, one has some scalar components of the fields
as components of the function ¥ In the case of chirowaveguides, it
will be shown that the scalar formulated orthogonality relations are
not dertved from the vector formulated relations. These two types of
orthogonality complement each other.

A. Vector-Formulated Orthogonaliry

The vector formulated orthogonality relations i chirowaveguides
are directly derived from Maxwell equations. Fig. 1 shows a cylin-
drical waveguirde with an arbitrary cross-sectional shape that is filled
with chiral material characterized by the chirality admittance v (the
cross-section S'*)) and nonchiral material (the cross-section S¢2).
The contour f separates chiral and nonchiral media. The external
contour L surrounding the waveguide cross-section S[S = SV 4+
S <2)] is an electric or magnetic wall. In the case of an open waveguide
the boundary L is at infinity.

For every region ¢{q = 1, 2) of the waveguide we write Maxwell
equations for time-harmonic fields (e’<) [1]

RYALE SRS 2)

where 3/ are Maxwell operators

V@ (l‘w{€(q) _|_N[V(A1)]2}

(vx)—wup'? iwp

—[(VX)—@;W“”]) (3)

(here we have v = v, »\3 == 0). U is a vector function of fields

E(q)
yUle = (H““ ) 4)

Let 5,, and U'Y be, correspondingly, the propagation constant
and the fields of mode m of the main boundary problem and 5,
and UL are correspondingly the propagating constant and the fields
of mode » of the conjugate boundary problem. One can obtain the
following relation [13]. [15]

m+ ) / O] [04] ds = 0. (5)
L Z Uy

In this relation, two modes are orthogonal for 4, + 1% # 0. If,
however, 7., + 35 = 0, we will mark n = r» and consider this mode
as the conjugate mode to the mode m. For conjugate modes we have
an expression for the norm

N, = N,,, i
>

Z/ B2« HY 4B xHO] e.ds  (6)
s(q)

q=1

i

[QUnfll) [ (q)] ds

m
()
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which describes the active power flow in a waveguide. The expres-
sions (5) and (6) are correct for propagating modes (4 is an imaginary
quantity) and for evanescent (5 is a real quantity) and complex modes
in closed lossless waveguides.

Complex modes in chirowaveguides have been investigated only
for lossless reciprocal waveguide structures [3], [7], [9]. There are
no publications at present concerning complex modes 1n lossless
chiroplasma or chiroferrite waveguides. The spectrum of complex
modes in reciprocal chirowaveguides has symmetrical positions on
the complex plane similar to the spectrum of complex modes in
shielded lossless dielectric waveguides (see Fig. 2). An interaction
of modes with ~,,, and —~,,, (or —~,,, and 7,;,) causes active power
flow, meanwhile an interaction of modes with 4,, and 7}, (or —1,,
and —~,, ) leads to reactive power flow [16]-[18]. The pairs of modes
that realize the carrying over of energy are characterized by the same
direction of phase velocity and different sign of amplitude changing.
Transmission of energy by complex modes is possible only at a certain
distance, analogous to bellow-cutoff waveguides [17]. The pairs of
conjugated modes are symmetrical with respect to the axis J (see
Fig. 2).

We can extend the derivation of the vector-formulated orthogo-
nality relations for a general case of open chiroplasma or chiroferrite
waveguides. On the basis of the procedure used in [13], [15], one can
be convinced that for Hermutian tensors, €9 and ; and real quantity
7, we have the same relations (5) and (6).

We apply now the relations of the vector-formulated orthogonality
for the special case of two parallel-plate waveguides partially loaded
with an isotropic chiral slab (Fig. 3). The thickness of the chiral
slab is a and that of the adjacent nonchiral medium is b. The plates
separation is d = a + b. The fields are independent of the X -axis.
We have from (5) and (6) for unit-width waveguide

5[ i

- (\mn :Vnz (7)

, a1 1N o aiae
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m
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Fig. 3. A two parallel-plate isotropic waveguide.

where 8, = 1if 3 +35 =0and by, = 0if Ve +37 £ 0, ka =
w /€. The integration is over the waveguide cross section (over
the height y from —b to a). Here we supposed, for simplicity, that

¢t = ¢'® = ¢ and used the relations for the fields in chiral medium
H(l)_”/E(l) E(l)
Y =i WL EW —ivED, ®)
I

Analogous relations (for v = 0) we have for nonchiral medium.
One obtains the following expression for the norm

-

Together with the relation (7), one can also obtain another relation
from (5). Using (8) and the analogous relation for nonchiral medium,
we have for the structure shown on Fig. 3

2
b Y | (E“ B
=1

]‘a' E(‘Z)E(q) dy. (9)

m
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2
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mn
For vm &£ 35 = 0 we obtain
2 >
Nao=3 / (Ef,?;Ei,?l ¥ v" EWED )dy. an
q=1

Conirary to the norm defined by (9), the norm N/, does not have
any physmal meaning. If |y,.| # |¥»| we can write

E / (Ef,‘}’ B’ 4

B. Scalar-Formulated Orthogonality

kg' E q)E(q

m n
7 m W n v v

) dy = 0. (12)

We will obtain the scalar-formulated orthogonality relations for a
two parallel-plate waveguide without a nonchiral layer (b = 0 on Fig.
3). For an isotropic chirowaveguide, we can write the next vector
equation

XV XF =2y xF - LEF =0 (13)

which is derived from the chiral constitute relations and Maxwell
equations [1]. Here F is a vector E or H. From the constitutive
relations and Maxwell equation, it also follows that [6], [9]

v -F=0 (14)

Equations (13) and (14) are correct for every mode that satisfy the
vector-formulated eigenvalue problem. After some transformations
we have for mode m

Ve =0 (15)
where
d2
P = Fl I+Cy 16)
is the differential-matrix operator
2
—(vm A FE AP PR) 2w il
Con = Yo ) D)
2wV —(vm +K3)
. _(Fn,
Vin = (me ) (18)

is the vector function of the fields, I is the unit matrix.
Let us also have mode p with propagation constant ~, (Fig. 2).
Analogously to homogeneous equations (15) we can obtain for mode

p

3,1, =0 (19)

where the differential-matrix operator ®, and the vector function V),
have the same form as the operator ®,, and the function V), (we
have to put p instead of m).

We define the scalar product as

/vap* ds:/(FmIF;m—f-meF yds (20)
JS S

where S is a cross section area of a waveguide. Now we scalarly
multiply (15) by the 1}” from the right and the complex-conjugate
form of (19) by the 17, from the left. After subtracting the last result
from the first one, we have

TRV e o (TN
/o |:( dljz )"'p "‘m ( deZ ) :|dy

+ / (Con Vi 1V — Vi (CV3) My = 0

2D

where the matrix ', is similar to the matrix Cy, [see (17)]. Using
an integration by parts we obtain

TPV . o (AP
L[(dr;ﬂ)"’—-‘m(d?)}(m_
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Because of boundary conditions for the electric field on perfect
electric walls at y = 0. «[En., E,, = 0.(dEw, [/dy) =
(dE,,/dy) = 0], the right-hand side of (22) is equal to zero. (We
have analogous results for the magnetic field on perfect magnetic
walls.) On the basis of (21), one obtains the following relation of
orthogonality

/ {[721 - (7;)2}(E7:12E;¢ + EmyE;y) + 2wuy

l"z - "mf‘f * * *
L (W En B} =5 B B, )} dy=0. (23)
it ip

It is evident, that the vector formulated orthogonality relations
obtained for parallel-plate chirowaveguide are different from the
relation (23).

III. FIELD STRUCTURE

The orthogonality relations enable us to obtain some correlations
between mode field components. In particular, such correlations
are 1nteresting for complex modes. For previously considered two
parallel-plate isotropic chirowaveguides (Fig. 3), we have only the
norm for 4,, = —A, [see (9)]. Evidently, for ~,, = 7, . the norm
defined from (7) will be equal to zero. This 1s a special feature
of complex modes 1n chirowaveguides in comparison with shielded
dielectric waveguides [16]-[18].

To obtain the norm (9) as a real quantity, and thus to obtain active
power flow provided by two complex modes, we have to demand that

(‘q) — _1"‘,'m Elq)
T el

(q) 41|’7171|E(q\
By T My "
e

(24)

If we substitute (24) into (9) we have the real norm N,

2 o fed® :
Co= = (q) pla)” ‘ (q) ply)” Y
-\m _:/_I Z/ (")mlEmlEnvL + |’\ |EmyEmy )‘h/~ (25)

hn

g=1
For 4., = a, + {J,, we obtain from (24)

la) 2 2 : (q)
Eﬁl P <nm - /jm + l 2‘1711/-3!71 ) me
o 2 2 2 2 :
E( ?) apy + /jm ar)n + /jm Ef)?z
¥

(26)
We can see that for any kinds of polarization of complex mode m,
mode /i is elliptically polarized and may be described as

(q)

(27)

where ¢ and d are real coefficients.
Because of similarity of modes m and m. we can assert that mode
m is generally described as

{q)
E,
(g
E

—=a+1ib (28)
where « and b are real coefficients. Therefore, the complex modes
1 parallel plate isotropic chirowaveguides that provide active power
flow have the elliptical polarization of the type (28).

It is necessary to note that according to [1] for propagating (7, is
an imaginary quantity) modes in chiral slab-waveguides we have the
following type of elliptical polarization

Em,_

— =14
Euzy

(29

where 4 is a real quantity.

On the basis of the relations (8) and (24), one can obtain, after
some transformations, that

() _ {hm (q)
wm, T ‘,‘) | H'”J N
m
. e .
HY = dRinl) a1 (30)

Tm
So the magnetic field has the elliptical polarization analogous to the
polarization of the electrical field.

We can consider the relations (24) and (30) as a special type of
reflection symmetry for the complex modes that realize active power
flow through a chirowaveguide. Such a type of reflection symmetry
has to be provided by a special discontinuity at the end of a complex-
mode waveguide and is different from reflection symmetry in a plane
perpendicular to the Z-axis in an infinite waveguide. The last type of
reflection symmetry is described in [19] for propagating or evanescent
modes 1n a two-dimensional (the fields are independent of the .\ -axts)
chirowaveguide. It is not so difficult to show that Maxwell equations
(2) for propagating or evanescent guide mode —m will be coincided

with Maxwell equations for guide mode m if y_,,, = —~,, and

E._ =E. .

H.,  =H,,

v, =-E,..

H, . =-H,,

E._ =E...

H. =H.,. (31
Specifically, for evanescent mode (V1 = Qpi. A —in = Ay = — Q)

we, evidently, can see the distinction between field relations defined
by (24) and (30) and by (31),

The orthogonality relations (10) and (24) enable us to correlate
the parameter of field polarization ellipses with mode propagation
constants. Since (23) was obtained for a waveguide without a
nonchiral layer (b = 0 on Fig. 3). our analysis will be correct for
such a kind of a structure.

Let 4p = ym = —7. (see Fig. 2). I 41, # k2.
(23)

we have from

/ (Ew,Ef, + Ew E5 ) dy =0, (32)

Using (24) and (28), we obtain for complex mode (7., = &, +15,,)

<a,+zb)ﬂ—(a—fb>“—”i’“i | E., Py =0.
e — 13 |Arml o v
(33)
This relation gives the result
i _ (Yyn (34)

b e
So we have a correlation between the parameters of the polarization
ellipse of complex mode m and the parameters of the propagation
constant.

Now we consider propagating and evanescent modes. Let for
propagating modes, 3, = J,. In such a case, we satisfy the relation
(32) only if the condition (29) of elliptical polarization takes place. It
corresponds to the results 1n [1]. Let for evanescent modes, a,, = ..
On the basis of (23), we have linear polarization for evanescent
modes. Let us have two propagating modes with the propagation
constants 3y, and J, (3 # 3.) and the polarizations described as

E?TZ .
< o= IA‘lm:
Emy
E, .
L= :1,1
Eny ! (35)
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where A,, and A4, are real quantities. After some transformations,
we have from (12) and (23) the following two equations
ﬂm/jnflmfln + ]\'3 =0 (36)
/3727'1 - /33 + 2”#”(/371 —4n - ljmflm) = 0 )
These relations show the correlations between the polarization pa-
rameters and the propagation constants of two propagating modes.

IV. CONCLUSION

In this paper we have obtained two types of mode orthogonality
in chirowaveguides. The first one is based on the vector equation
of the eigenfunction problem. The vector formulated orthogonality
(so-called power orthogonality) is a general form of orthogonality.

The second type of mode orthogonality is derived on the basis of
scalar equations. We have obtained the scalar formulated orthogo-
nality relations for two parallel-plate isotropic chirowaveguides. It
is evident that this type of orthogonality differs from the vector
formulated orthogonality for the same structure of chirowaveguide.

In this paper we have given special attention to a problem of
complex modes in chirowaveguides. Active power flow in a wave-
guide may take place by combination of two complex modes of the
spectrum. We have obtained the correlation between field compo-
nents of two complex modes that transfer active power flow. The
polarization of complex modes in chirowaveguides is different from
the polarization of propagating and evanescent modes. According to
our analysis, one can correlate the polarization parameters of modes
with their propagation constants.
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Development of Semi-Empirical Design Equations
for Symmetrical Three-Line Microstrip Couplers

Lukang Yu and Banmali Rawat

Abstract—Semi-empirical design equations for symmetrical three-line
microstrip couplers (TMC’s) have been developed. The approach is
based on dividing the total capacitance of the system into various basic
capacitances, which are then calculated empirically and semi-numerically.
The numerical results based on these design equations have been found
in good agreement with the previously obtained results.

I. INTRODUCTION

Symmetrical TMC’s have been investigated by many authors
[1]-[6]. The quasi-static characteristics of these couplers can be
completely determined from the capacitance matrix of the structure.
For design purposes, a table or a graph for many sets of line
parameters has to be prepared. Various methods for calculating
the static capacitances inevitably involve time-consuming numerical
procedures. This paper intends to derive closed-form expressions for
the characteristics of symmetrical TMC’s. The approach is based
on the division of the total capacitance of the structure into various
basic capacitances. These basic capacitances can then be calculated
empirically and semi-numerically.

II. DiviSION OF THE TOTAL CAPACITANCE

The division of the total capacitance of a symmetrical TMC into
parallel-plate, fringe, and gap capacitances is shown in Fig. 1. The
three propagation modes of the coupler are designated as A-, B-, and
C-modes, which correspond to ee-, oo-, and oe-modes, respectively,
in [6]. Due to the symmetrical configuration, the vertical centerline of
the cross section is replaced by a magnetic wall for 4- and B-modes,
or an electric wall for C-mode. Using Fig. 1(a), the effective dielectric
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